ensemble learning

  1. Dagging

    This is the Dagging classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/Dagging.html

    weka
  2. Decorate

    This is the Decorate classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/Decorate.html

    weka
  3. END

    This is the END classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/END.html

    weka
  4. DataNearBalancedND

    This is the DataNearBalancedND classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/nestedDichotomies/DataNearBalancedND.html

    weka
  5. RandomCommittee

    This is the RandomCommittee classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/RandomCommittee.html

    weka
Rows per page: 1-5 of 12
  1. Random Forest Apply

    Apply trained Mahout Random Forest Classifier to data

    mahout
  2. Random Forest Train

    Trains a Mahout random forest classifier.

    mahout
  3. RandomCommittee

    This is the RandomCommittee classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/RandomCommittee.html

    weka
  4. Dagging

    This is the Dagging classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/Dagging.html

    weka
  5. RandomSubSpace

    This is the RandomSubSpace classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/RandomSubSpace.html

    weka
Rows per page: 1-5 of 12
  1. Random Forest Train

    Trains a Mahout random forest classifier.

    mahout
  2. Random Forest Apply

    Apply trained Mahout Random Forest Classifier to data

    mahout
  3. Vote

    This is the Vote classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/Vote.html

    weka
  4. StackingC

    This is the StackingC classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/StackingC.html

    weka
  5. Stacking

    This is the Stacking classifier, as implemented in Weka: http://weka.sourceforge.net/doc.stable/weka/classifiers/meta/Stacking.html

    weka
Rows per page: 1-5 of 12