Illustration of revolving door with customers leaving

Why is churn prediction important? 

Defined loosely, churn is the process by which customers cease doing business with a company. Preventing a loss in profits is one clear motivation for reducing churn, but other subtleties may underlie a company’s quest to quell it. Most strikingly, the cost of customer acquisition usually starkly outweighs that of customer retention, so stamping out churn also compels from a more subtle financial perspective. 

While churn presents an obvious difficulty to businesses, its remedy is not always immediately clear. In many cases, and without descriptive data, companies are at a loss as to what drives it. Luckily, machine learning provides effective methods for identifying churn’s underlying factors and proscriptive tools for addressing it.

Methods for solving high churn rate

As with any machine learning task, the first, and often the most crucial step, is gathering data. Typical datasets used in customer churn prediction tasks will often curate customer data such as time spent on a company website, links clicked, products purchased, demographic information of users, text analysis of product reviews, tenure of the customer-business relationship, etc. The key here is that the data be high quality, reliable, and plentiful. 

Good results can often still be obtained with sparse data, but obviously more data is usually better. Once the data has been chosen, the problem must be formulated and the data featurization chosen. It’s important that this stage be undertaken with an attention to detail, as churn can mean different things to different enterprises. 

Types of churn

For some, the problem is best characterized as predicting the ratio of churn to retention. For others, predicting the percentage risk that an individual customer will churn is desired. And for many more, identifying churn might constitute taking a global perspective and predicting the future rate at which customers might exit the business relationship. All of these are valid qualifications, but they must be chosen consistently across the customer churn prediction pipeline.

Once the data has been chosen, prepped, and cleaned, modeling can begin. While identifying the most suitable deep learning prediction model can be more of an art than a science, we’re usually dealing with a classification problem (predicting whether a given individual will churn) for which certain models are standards of practice. 

For classification problems such as this, both decision trees and logistic regression are desirable for their ease of use, training and inference speed, and interpretable outputs. These should be the go-to methods in any practitioner’s toolbox for establishing a baseline accuracy before moving onto more complex modeling choices. 

For decision trees, the model can be further tweaked by experimenting with adding random forests, bagging, and boosting. Beyond these two choices, Convolutional Neural Networks, Support Vector Machines, Linear Discriminant Analysis, and Quadratic Discriminant Analysis can all serve as viable prediction models to try. 

Defining metrics with customer data 

Once a model has been chosen, it needs to be evaluated against a consistent and measurable benchmark. One way to do this is to examine the model’s ROC (Receiver Operating Characteristic) curve when applied to a test set. Such a curve plots the True Positive rate against the False Positive rate. By looking to maximize the AUC (area under the curve), one can tune a model’s performance or assess tradeoffs between different models. 

Another useful metric is the Precision-Recall Curve, which, you guessed it, plots precision vs. recall. It’s useful in problems where one class is more qualitatively interesting than the other, which is the case with churn because we’re interested in the smaller proportion of customers looking to leave than those who aren’t (although we do care about them as well). 

In this case, a business would hope to develop potential churners with high precision so as to target potential interventions at them. For example, one such intervention might involve an email blast offering coupons or discounts to those most likely to churn. By carefully selecting which customers to target, businesses can allay the cost of these redemptive measures and increase their effectiveness.

Sifting through insights from model output 

Once the selected model has been tuned, a post-hoc analysis can be conducted. An examination of which input data features were most informative to the model’s success could suggest areas to target and improve. The total pool of customers can even be divided into segments, perhaps by using a clustering algorithm such as k-means. 

This allows businesses to hone in on the particular markets where they may be struggling and custom tailor their churn prevention approaches to meet those markets’ individual needs. They can also tap into the high interpretability of their prediction model (if such an interpretable model was selected) and use it to identify the decisions which led those customers to churn.

Combating churn with machine learning

While churn prediction can look like a daunting task, it’s actually not all that different from any machine learning problem. When looked at generally, the overall workflow looks much the same. However, special care must be given to the feature selection, model interpretation, and post-hoc analysis phases so that appropriate measures can be taken to alleviate churn. 

In this way, the key skill in adapting machine learning to churn prediction lies not in any particular, specialized model to the task but in the domain knowledge of the practitioner and that person’s ability to make knowledgeable business decisions given the black box of a model’s output.