All posts by Lucy Targett

ML for Enterprises: Common Use Cases for Enterprise Machine Learning

In part two of our blog series about machine learning in the enterprise, we talk briefly about some of the most common use cases for machine learning. Larger companies produced the widest variety of use cases, however, there was no one single area of focus. Despite such varied answers on where companies were centralizing their attention, we noticed some common trends that we’ll discuss below.

Get the Full Report “The State of Enterprise Machine Learning” here.

Intro to enterprise machine learning

Machine learning is rapidly improving in compute power, data availability, and storage capabilities. These advances encourage companies to race to leverage machine learning within the enterprise at full speed. There are still uncertainties and risks associated with experimenting with and implementing artificial intelligence in the enterprise, but most large companies have entered the machine learning space regardless. 

Benefits but also challenges of enterprise machine learning are coming to the surface as more enterprises begin to utilize it as a solution. Artificial intelligence will eventually automate, augment, or replace many human business processes. In our report, “The State of Enterprise Machine Learning,” we explore the benefits, use cases, challenges, and trends in enterprise machine learning. This article will explore the use cases.

Which industries use machine learning?

Enterprise machine learning use cases span many industries including healthcare, financial services, retail, automotive, government, transportation, and utilities. Some examples of use cases within each industry are:

  • Healthcare – Machine learning is being used to develop better processes for diagnosis. 
  • Financial Services – ML is used to prevent fraud, know when to trade, and identify high-risk profiles.
  • Retail – ML can capture, analyze, and use customer shopping data to personalize the shopping experience.
  • Automotive – Machine learning is used to improve operations, marketing, and customer experience, as well as quality control vehicle parts.
  • Government – ML can help mine data from multiple sources in order to increase efficiency, save money, detect fraud, and protect against identity theft.

These are just a few examples, because there is use for AI within every industry. Whether it is simply to improve data analytics or to assist a larger business process, data scientists can build ML models to increase efficiency in any company, in any industry.

What are the use cases of machine learning?

Data science teams have discovered many use cases of machine learning that benefit industries across the board. Here are a few of the most common enterprise machine learning use cases.


Enterprise Machine Learning Use Cases

Big emphasis on the customer

Among all our respondents, there was clear attention to how machine learning capabilities would help them interact with and retain their customers. Some of the highest selected use cases identified were: generating customer insights and intelligence (#1), improving the customer experience (#2), interacting with customers (#5), increasing customer satisfaction (#6), and retaining customers (#7).

Among the largest companies, the most common use case reported was increasing customer loyalty (59%), followed by increasing customer satisfaction (51%), and interacting with customers (48%). Similarly, among the smallest of responding companies, increasing customer satisfaction (36%) was the second most identified use case behind reducing costs (43%).

Larger organizations use data science to identify areas of cost savings

For larger organizations, cost savings seems to be an increasingly important area of focus. This is due to the fact that it is easy to tie ROI to cost savings programs and showcase success.  43% of companies with 1,001 to 2,500 employees put it as a use case, as well as 41% of companies between 2,501 and 10,000 employees, and 48% of companies with more than 10,000 employees.


Enterprise Machine Learning Maturity

The focus on reducing costs is higher among sophisticated adopters

Sophisticated adopters have put the time and effort into developing their machine learning capabilities, with larger companies more likely to do so with greater resources. These larger and more sophisticated companies are investing more across a broader range of use cases. They are also the most focused on how they can use machine learning to reduce costs; 44% mentioned it as one of their use cases.

Early stage adopters are mainly focused on improving their customer retention through the application of machine learning (60%), with the middle stage adopters split between increasing customer loyalty (38%) and a growing interest in reducing costs (39%).

In general, larger and more sophisticated companies filled in more use cases overall than smaller and less mature companies: as you put resources toward and get better at ML, you get smarter about where to apply it and gain clarity on how it can help your business.

With these in mind, how are you utilizing your company’s machine learning capabilities, and how can Algorithmia help?

Algorithmia’s AI Layer provides a serverless microservices architecture which allows your team to deploy models as independent services rather than one large monolithic structure. This infrastructure productionized models easily, cutting down unnecessary time spent on deployment and allowing the team to spend more time building and training models. Algorithmia created this ML platform because we understand the challenges enterprises have to face to implement machine learning, and we want to make it easier to benefit from the technology.

Help your organization chart the path to machine learning maturity by gaining an understanding of the benefits, challenges, and solutions of the current uses of enterprise machine learning.

Get the Full Report “The State of Enterprise Machine Learning” here.

Machine learning engineers and data scientists biggest challenge: deploying models at scale

Key Findings in a Survey of 500+ Machine Learning Professionals

Earlier this year we set out to understand how organizations are reacting and adapting to machine learning, its rate of adoption in the marketplace, and how the industry is evolving. We wanted to understand what our customers’ challenges are as Algorithmia plans to develop products, services, and content to help move the industry forward. We heard from over 500 decision makers at companies representing various sizes and industries. We want to share their knowledge with the industry at large.

Get the Full Report “The State of Enterprise Machine Learning”

What we found was a mix of expected and astonishing. First, as we expected, organizations that make a concerted effort to focus on machine learning and artificial intelligence across their customer lifecycle are more successful. These organizations have higher rates of brand loyalty, lower costs of operations, and many other benefits which we will discuss later.

Second, data scientists and machine learning engineers at companies of all sizes find that their number one challenge is deploying models across their infrastructure. This seems at odds with the first finding, considering companies must be able to deploy models in order to reap the rewards. The main problem is that not all enterprises are experts at deploying models, nor do these organizations make a concerted effort to focus on machine learning.

We found that in machine learning and artificial intelligence organizations:

  • Data scientists are facing many roadblocks such as deployment, model control, etc.
  • Companies are increasing their investment in machine learning on average by 25 percent
  • Large enterprises are taking the lead in this initiative
  • Machine learning leadership has no central location within an organization to date; they tend to be spread across the organization
  • There are a broad number of use cases and applied applications for machine learning to date

Data scientists are facing many roadblocks
Most data science and machine learning teams are not able to focus on adding value. Rather, they spend the majority of their time on infrastructure, deployment, and data engineering. This leaves less than 25 percent of their time for training and iterating models, which is their primary job function. Across all organizations we surveyed, only 8 percent of respondents consider their organization “sophisticated” in their machine learning programs. The remainder considered themselves early adopters.

If data scientists cannot focus their time on advancing these systems to become sophisticated, organizations risk being stuck in mediocrity. Budgets are also growing faster for organizations that consider themselves “sophisticated.” 51 percent of these companies have increased their machine learning budgets by at least 25 percent this year.

Companies are quickly increasing their investment in machine learning
Overall, 80 percent of respondents say their organization’s investment in machine learning has grown by at least 25 percent in the past 12 months. What is most interesting is that this number climbs to 92 percent in organizations with greater than 10,000 employees. It is safe to say that organizations of all sizes are accelerating their investment. However, large enterprises seem to be willing to invest more.

Big companies are taking the lead
Employees within larger organizations feel significantly more satisfied with their progress than smaller organizations. The employees in this larger sector are roughly 300 percent more likely to consider their model deployment “sophisticated.” The market is moving quickly to develop tools that will help smaller organizations catch up, but this gap remains for the foreseeable future.

Companies have not decided where machine learning leadership should come from
Overall, 37 percent of respondents say their machine learning efforts are being directed primarily by management, while 55 percent say their efforts are emerging from engineers or other technical teams.

Qualitatively, many data scientists are fighting existing systems and processes without clear understanding from management. Without guidance and goals, this leads to confusion and a lack of organizational management to help companies move beyond these challenges.

One hypothesis for this is that as companies get larger, management begins to set the priorities more. We noted that 33 percent of companies with more than 10,000 employees say management sets priorities, remove roadblocks, and ensure data scientists are free to do their jobs.

Another interesting note is that business roles (management, product management) set priorities more often than technical roles (DevOps, ML engineer, R&D). Data scientists are in the middle.

Companies are trying a wide variety of use cases
Among enterprises of 10,000 employees or more, the most significant use case is increasing customer loyalty (59 percent), followed by increasing customer satisfaction (51 percent), and interacting with customers (48 percent).

In general, larger and more sophisticated companies noted more use cases overall than smaller and less mature companies. Our finding is as companies get better at machine learning, they get smarter about where to focus their efforts, and gain clarity around the results.

For larger organizations, cost savings are increasingly significant: 43 percent of companies between 1,001 and 2,500 employees, 41 percent of companies between 2,501 and 10,000 employees, and 48 percent of companies with more than 10,000 employees put cost savings as a use case.

The goal of this research and blog post is to give people in the industry a baseline understanding of the current maturity of the competitive landscape. The data from our survey shows that companies are rapidly maturing and running into common challenges. We hope this helps you navigate our quickly evolving field.

Would you like to read the report and make your conclusions? Get the Full Report “The State of Enterprise Machine Learning”[Download]