No algorithm description given

Run some discrete-wavelet-related operation over the provided input data. Input supports the following options: data, a required array of numbers to operate over operation, specifies what to do with the data, currently supports:  - forward, run a forward DWT from the time domain to the frequency domain  - reverse, run a reverse DWT from frequency to time domain  - denoise, run a forward DWT, zero out small coefficients, then reverse the transform wavelet, the wavelet type to use for the transformation, see PyWavelets documentation mode, how to treat the boundaries of the finite dataset, see the PyWavelets documentation threshold, the cutoff level for component magnitudes below which they're zeroed, required if denoising For input data that is not sized as a power of 2, the data will first be decomposed into sublists of sizes that do meet that requirement, and then each component is manipulated as before.

(no tags)

Cost Breakdown

0 cr
royalty per call
1 cr
usage per second
avg duration

Cost Calculator

API call duration (sec)
API calls
Estimated cost
per calls
for large volume discounts
For additional details on how pricing works, see Algorithmia pricing.

No permissions required

This algorithm does not require any special permissions.

To understand more about how algorithm permissions work, see the permissions documentation.

1. Type your input

2. See the result

Running algorithm...

3. Use this algorithm

curl -X POST -d '{{input | formatInput:"curl"}}' -H 'Content-Type: application/json' -H 'Authorization: Simple YOUR_API_KEY'
View cURL Docs
algo auth
algo run algo://paranoia/PyWaveletTransform/0.1.0 -d '{{input | formatInput:"cli"}}'
View CLI Docs
import com.algorithmia.*;
import com.algorithmia.algo.*;

String input = "{{input | formatInput:"java"}}";
AlgorithmiaClient client = Algorithmia.client("YOUR_API_KEY");
Algorithm algo = client.algo("algo://paranoia/PyWaveletTransform/0.1.0");
AlgoResponse result = algo.pipeJson(input);
View Java Docs
import com.algorithmia._
import com.algorithmia.algo._

val input = {{input | formatInput:"scala"}}
val client = Algorithmia.client("YOUR_API_KEY")
val algo = client.algo("algo://paranoia/PyWaveletTransform/0.1.0")
val result = algo.pipeJson(input)
View Scala Docs
var input = {{input | formatInput:"javascript"}};
           .then(function(output) {
View Javascript Docs
var input = {{input | formatInput:"javascript"}};
           .then(function(response) {
View NodeJS Docs
import Algorithmia

input = {{input | formatInput:"python"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('paranoia/PyWaveletTransform/0.1.0')
print algo.pipe(input)
View Python Docs

input <- {{input | formatInput:"r"}}
client <- getAlgorithmiaClient("YOUR_API_KEY")
algo <- client$algo("paranoia/PyWaveletTransform/0.1.0")
result <- algo$pipe(input)$result
View R Docs
require 'algorithmia'

input = {{input | formatInput:"ruby"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('paranoia/PyWaveletTransform/0.1.0')
puts algo.pipe(input).result
View Ruby Docs
use algorithmia::*;

let input = {{input | formatInput:"rust"}};
let client = Algorithmia::client("YOUR_API_KEY");
let algo = client.algo('paranoia/PyWaveletTransform/0.1.0');
let response = algo.pipe(input);
View Rust Docs
  • {{comment.username}}