1. Introduction

This is an image classifier specifically trained for classifying various places. The list of places can be found here.


  • (Required) Image Data API Url, Web (http/https) Url, binary image or a base64 encoded image.
  • (Optional)?Number of results. (Default=5)


  • Top N classifications.

Note: The first call to this algorithm will take a bit longer than sequential calls to due algorithm initialization. All following calls will be significantly faster.

2. Examples

Example 1.

  • Parameter 1: Data API Url
    "image": "data://deeplearning/example_data/burj_khalifa.jpg"


  "predictions": [
    {"class": "tower", "prob": 0.6098036170005801},
    {"class": "skyscraper", "prob": 0.14249812066555023},
    {"class": "office_building", "prob": 0.04916094988584519},
    {"class": "downtown", "prob": 0.02924365177750587},
    {"class": "church/outdoor", "prob": 0.028504755347967155}

Example 2.

  • Parameter 1: HTTP Url
    "image": "https://s3.amazonaws.com/algorithmia-assets/algo_desc_images/deeplearning_Places365Classifier/airfield.jpg"


  "predictions": [
    {"class": "airfield", "prob": 0.5347753167152406},
    {"class": "runway", "prob": 0.2845350205898285},
    {"class": "heliport", "prob": 0.09564844518899919},
    {"class": "landing_deck", "prob": 0.034962698817253106},
    {"class": "raceway", "prob": 0.02728229202330112}

Example 3.

  • Parameter 1: Base64 image
    "image": "data:image/png;base64....",


    {"class": "archive", "prob": 0.16057744622230533},
    {"class": "beauty_salon", "prob": 0.11514712870121004},
    {"class": "dressing_room", "prob": 0.06852224469184875},
    {"class": "biology_laboratory", "prob": 0.044164657592773444},
    {"class": "coffee_shop", "prob": 0.037719260901212685}

Example 4.

  • Parameter 1: Data API Url
  • Parameter 2: Number of results.
  "image": "data://deeplearning/example_data/coast.jpg",
  "numResults": 15


  "predictions": [
    {"class": "islet", "prob": 0.5723654627799988},
    {"class": "cliff", "prob": 0.13769967854022983},
    {"class": "coast", "prob": 0.1219320520758629},
    {"class": "ocean", "prob": 0.05200425907969475},
    {"class": "lagoon", "prob": 0.034720458090305335},
    {"class": "harbor", "prob": 0.01532892324030399},
    {"class": "lake/natural", "prob": 0.01080096885561943},
    {"class": "village", "prob": 0.008164397440850735},
    {"class": "valley", "prob": 0.005376808345317839},
    {"class": "mountain", "prob": 0.0051351888105273255},
    {"class": "river", "prob": 0.004809863399714232},
    {"class": "butte", "prob": 0.00298486975952983},
    {"class": "sky", "prob": 0.002884584246203304},
    {"class": "beach", "prob": 0.0028554031159728765},
    {"class": "rainforest", "prob": 0.002376777119934559}

3. Credits

For more information please refer to: Places: An Image Database for Deep Scene Understanding B. Zhou, A. Khosla, A. Lapedriza, A. Torralba and A. Oliva Arxiv, 2016

Trained model was retrieved from: Places2.

Demo image were retrieved from Wikipedia:




Writing good docs:

Communicate Value

A good introduction should make it clear why someone might use your API.

Show and Tell

Give examples of using your API and explain those examples.

Easy to Skim

Ensure your docs are structured such that familiar users can quickly jump to the content they want.


Revisit your docs after making breaking changes or adding new features to keep them up-to-date.