Principal Component Analysis

No algorithm description given

Principal Component Analysis (PCA) using the covariance method ( Wikipedia ) The algorithm computes the principal components of a set of n -dimensional data points and transforms the points to a new coordinate system s.t. the first dimension contains the greatest variance, the second dimension contains the second greatest variance, etc. The algorithm takes as input a list of data points (which are themselves lists of doubles), and outputs an object with the following four fields: "transformed": the transformed data points "eigenvectors": the eigenvectors/principal components of the input data set (ordered by decreasing variance) "eigenvalues": the eigenvalues of the eigenvectors (in the same order) "mean": the mean of the input data

Tags
(no tags)

Cost Breakdown

50 cr
royalty per call
1 cr
usage per second
avg duration

Cost Calculator

API call duration (sec)
×
API calls
=
Estimated cost
per calls
for large volume discounts
For additional details on how pricing works, see Algorithmia pricing.

No permissions required

This algorithm does not require any special permissions.


To understand more about how algorithm permissions work, see the permissions documentation.

1. Type your input

2. See the result

Running algorithm...

3. Use this algorithm

curl -X POST -d '{{input | formatInput:"curl"}}' -H 'Content-Type: application/json' -H 'Authorization: Simple YOUR_API_KEY' https://api.algorithmia.com/v1/algo/basten/PrincipalComponentAnalysis/0.1.0
View cURL Docs
algo auth
# Enter API Key: YOUR_API_KEY
algo run algo://basten/PrincipalComponentAnalysis/0.1.0 -d '{{input | formatInput:"cli"}}'
View CLI Docs
import com.algorithmia.*;
import com.algorithmia.algo.*;

String input = "{{input | formatInput:"java"}}";
AlgorithmiaClient client = Algorithmia.client("YOUR_API_KEY");
Algorithm algo = client.algo("algo://basten/PrincipalComponentAnalysis/0.1.0");
AlgoResponse result = algo.pipeJson(input);
System.out.println(result.asJsonString());
View Java Docs
import com.algorithmia._
import com.algorithmia.algo._

val input = {{input | formatInput:"scala"}}
val client = Algorithmia.client("YOUR_API_KEY")
val algo = client.algo("algo://basten/PrincipalComponentAnalysis/0.1.0")
val result = algo.pipeJson(input)
System.out.println(result.asJsonString)
View Scala Docs
var input = {{input | formatInput:"javascript"}};
Algorithmia.client("YOUR_API_KEY")
           .algo("algo://basten/PrincipalComponentAnalysis/0.1.0")
           .pipe(input)
           .then(function(output) {
             console.log(output);
           });
View Javascript Docs
var input = {{input | formatInput:"javascript"}};
Algorithmia.client("YOUR_API_KEY")
           .algo("algo://basten/PrincipalComponentAnalysis/0.1.0")
           .pipe(input)
           .then(function(response) {
             console.log(response.get());
           });
View NodeJS Docs
import Algorithmia

input = {{input | formatInput:"python"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('basten/PrincipalComponentAnalysis/0.1.0')
print algo.pipe(input)
View Python Docs
library(algorithmia)

input <- {{input | formatInput:"r"}}
client <- getAlgorithmiaClient("YOUR_API_KEY")
algo <- client$algo("basten/PrincipalComponentAnalysis/0.1.0")
result <- algo$pipe(input)$result
print(result)
View R Docs
require 'algorithmia'

input = {{input | formatInput:"ruby"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('basten/PrincipalComponentAnalysis/0.1.0')
puts algo.pipe(input).result
View Ruby Docs
use algorithmia::*;

let input = {{input | formatInput:"rust"}};
let client = Algorithmia::client("YOUR_API_KEY");
let algo = client.algo('basten/PrincipalComponentAnalysis/0.1.0');
let response = algo.pipe(input);
View Rust Docs
Discussion
  • {{comment.username}}