Spike Detection

No algorithm description given

A simple anomaly detection algorithm that reports sudden changes in a time series. Takes as input a time series in the form of a double[] and a spike threshold. If any point differs from its neighbor by more than the threshold value, it is considered an anomaly. The array returned matches the input array on anomaly points, all other points are set to 0. Note that this only takes local information into account, so if the time series has, for instance, a high magnitude period in between low magnitude periods, only the start and end of the high magnitude period will be reported.

Tags
(no tags)

Cost Breakdown

0 cr
royalty per call
1 cr
usage per second
avg duration

Cost Calculator

API call duration (sec)
×
API calls
=
Estimated cost
per calls
for large volume discounts
For additional details on how pricing works, see Algorithmia pricing.

Internet access

This algorithm has Internet access. This is necessary for algorithms that rely on external services, however it also implies that this algorithm is able to send your input data outside of the Algorithmia platform.


To understand more about how algorithm permissions work, see the permissions documentation.

1. Type your input

2. See the result

Running algorithm...

3. Use this algorithm

curl -X POST -d '{{input | formatInput:"curl"}}' -H 'Content-Type: application/json' -H 'Authorization: Simple YOUR_API_KEY' https://api.algorithmia.com/v1/algo/TimeSeries/SpikeDetection/0.1.1
View cURL Docs
algo auth
# Enter API Key: YOUR_API_KEY
algo run algo://TimeSeries/SpikeDetection/0.1.1 -d '{{input | formatInput:"cli"}}'
View CLI Docs
import com.algorithmia.*;
import com.algorithmia.algo.*;

String input = "{{input | formatInput:"java"}}";
AlgorithmiaClient client = Algorithmia.client("YOUR_API_KEY");
Algorithm algo = client.algo("algo://TimeSeries/SpikeDetection/0.1.1");
AlgoResponse result = algo.pipeJson(input);
System.out.println(result.asJsonString());
View Java Docs
import com.algorithmia._
import com.algorithmia.algo._

val input = {{input | formatInput:"scala"}}
val client = Algorithmia.client("YOUR_API_KEY")
val algo = client.algo("algo://TimeSeries/SpikeDetection/0.1.1")
val result = algo.pipeJson(input)
System.out.println(result.asJsonString)
View Scala Docs
var input = {{input | formatInput:"javascript"}};
Algorithmia.client("YOUR_API_KEY")
           .algo("algo://TimeSeries/SpikeDetection/0.1.1")
           .pipe(input)
           .then(function(output) {
             console.log(output);
           });
View Javascript Docs
var input = {{input | formatInput:"javascript"}};
Algorithmia.client("YOUR_API_KEY")
           .algo("algo://TimeSeries/SpikeDetection/0.1.1")
           .pipe(input)
           .then(function(response) {
             console.log(response.get());
           });
View NodeJS Docs
import Algorithmia

input = {{input | formatInput:"python"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('TimeSeries/SpikeDetection/0.1.1')
print algo.pipe(input)
View Python Docs
library(algorithmia)

input <- {{input | formatInput:"r"}}
client <- getAlgorithmiaClient("YOUR_API_KEY")
algo <- client$algo("TimeSeries/SpikeDetection/0.1.1")
result <- algo$pipe(input)$result
print(result)
View R Docs
require 'algorithmia'

input = {{input | formatInput:"ruby"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('TimeSeries/SpikeDetection/0.1.1')
puts algo.pipe(input).result
View Ruby Docs
use algorithmia::*;

let input = {{input | formatInput:"rust"}};
let client = Algorithmia::client("YOUR_API_KEY");
let algo = client.algo('TimeSeries/SpikeDetection/0.1.1');
let response = algo.pipe(input);
View Rust Docs
Discussion
  • {{comment.username}}