Named Entity Recognition

No algorithm description given

Table of Contents Introduction I/O Examples Credits Algorithm Console Introduction This algorithm retrives recognized entities from a body of text using the stanfordNlp library.Currently it identifies named noun type entities such as PERSON, LOCATION, ORGANIZATION, MISC and numerical MONEY, NUMBER, DATA, TIME, DURATION, SET types. note: the previous string version of this algorithm is now deprecated, which means its still functional but no longer documented. I/O Input {
 "document": String
 document - (required) an arbitrary length text document. Output {
 "sentences": List[
 "detectedEntities": List[
 "word": String,
 "entity": String
 sentences - a list of sentences discovered in the input document detectedEntities - a list of detected entities discovered in this particular sentence word - the detected keyword word in the input document that refers to a specific entity entity - the named entity the keyword relates to (ie: PERSON, ORGANIZATION, NUMBER, etc) Examples { 
 "document":"Jim went to Stanford University, Tom went to the University of Washington. They both work for Microsoft."
 "sentences": [
 "detectedEntities": [
 {"word": "Jim", "entity": "PERSON"},
 {"word": "Stanford", "entity": "ORGANIZATION"},
 {"word": "University", "entity": "ORGANIZATION"},
 {"word": "Tom", "entity": "PERSON"},
 {"word": "University", "entity": "ORGANIZATION"},
 {"word": "of", "entity": "ORGANIZATION"},
 {"word": "Washington", "entity": "ORGANIZATION"}
 "detectedEntities": [
 {"word": "Microsoft", "entity": "ORGANIZATION"}

 Credits For more information, please refer to stanford core-nlp or Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard, Steven J., and McClosky, David. 2014. The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55-60.

(no tags)

Cost Breakdown

0 cr
royalty per call
1 cr
usage per second
avg duration

Cost Calculator

API call duration (sec)
API calls
Estimated cost
per calls
for large volume discounts
For additional details on how pricing works, see Algorithmia pricing.

No permissions required

This algorithm does not require any special permissions.

To understand more about how algorithm permissions work, see the permissions documentation.

1. Type your input

2. See the result

Running algorithm...

3. Use this algorithm

curl -X POST -d '{{input | formatInput:"curl"}}' -H 'Content-Type: application/json' -H 'Authorization: Simple YOUR_API_KEY'
View cURL Docs
algo auth
algo run algo://StanfordNLP/NamedEntityRecognition/0.2.0 -d '{{input | formatInput:"cli"}}'
View CLI Docs
import (
  algorithmia ""

input := {{input | formatInput:"go"}}

var client = algorithmia.NewClient("YOUR_API_KEY", "")
algo, _ := client.Algo("algo://StanfordNLP/NamedEntityRecognition/0.2.0")
resp, _ := algo.Pipe(input)
response := resp.(*algorithmia.AlgoResponse)
View Go Docs
import com.algorithmia.*;
import com.algorithmia.algo.*;

String input = "{{input | formatInput:"java"}}";
AlgorithmiaClient client = Algorithmia.client("YOUR_API_KEY");
Algorithm algo = client.algo("algo://StanfordNLP/NamedEntityRecognition/0.2.0");
AlgoResponse result = algo.pipeJson(input);
View Java Docs
import com.algorithmia._
import com.algorithmia.algo._

val input = {{input | formatInput:"scala"}}
val client = Algorithmia.client("YOUR_API_KEY")
val algo = client.algo("algo://StanfordNLP/NamedEntityRecognition/0.2.0")
val result = algo.pipeJson(input)
View Scala Docs
var input = {{input | formatInput:"javascript"}};
           .then(function(output) {
View Javascript Docs
var input = {{input | formatInput:"javascript"}};
           .then(function(response) {
View NodeJS Docs
import Algorithmia

input = {{input | formatInput:"python"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('StanfordNLP/NamedEntityRecognition/0.2.0')
print algo.pipe(input)
View Python Docs

input <- {{input | formatInput:"r"}}
client <- getAlgorithmiaClient("YOUR_API_KEY")
algo <- client$algo("StanfordNLP/NamedEntityRecognition/0.2.0")
result <- algo$pipe(input)$result
View R Docs
require 'algorithmia'

input = {{input | formatInput:"ruby"}}
client = Algorithmia.client('YOUR_API_KEY')
algo = client.algo('StanfordNLP/NamedEntityRecognition/0.2.0')
puts algo.pipe(input).result
View Ruby Docs
use algorithmia::*;

let input = {{input | formatInput:"rust"}};
let client = Algorithmia::client("YOUR_API_KEY");
let algo = client.algo("StanfordNLP/NamedEntityRecognition/0.2.0");
let response = algo.pipe(input);
View Rust Docs
import Algorithmia

let input = "{{input | formatInput:"swift"}}";
let client = Algorithmia.client(simpleKey: "YOUR_API_KEY")
let algo = client.algo(algoUri: "StanfordNLP/NamedEntityRecognition/0.2.0") { resp, error in
View Swift Docs
  • {{comment.username}}